Here you can easily convert from Volts to kW, with this tool you can do it automatically.

We explain the formula that is used in the conversion of Volts to kW, we also show how to go from volts to kW in 1 single step , some illustrated examples of volts to kW and a table with the main conversions from volts to kW.

Most common power factor values in different constructions, appliances and motors.

**More information to convert from volts to kW:**

- Formula of volts to kW
- How to convert from volts to kW in only 1 step
- Examples of conversion of volts to kW .
- Table volts to kW .
- Typical power factor uncorrected for different constructions.
- Common power factor uncorrected for different appliances.
- Typical power factor uncorrected for motors
- How to use the calculator volts to kW.

**Formula to convert, pass, calculate and transform from volts to kW, single-phase, two-phase and three-phase:**

**kW DC = kW, active power DC (direct current).**_{kW 1Ø}= kW 1 phase._{kW 2Ø}= kW 2 phases._{kW 3Ø}= kW 3 phases.**V**_{L-N}= Volts line-neutral.**V**_{L-L}= Volts line-line.**I**_{AC1Ø}= Current / monophase Amps.**I**_{AC2Ø}= Current / BiphasicAmps.**I**_{AC3Ø}= Current / Three phase Amps.**FP = Power factor.**

Return to the table of initial contents ↑

**How to convert from volts to kW in 1 single step:**

**Step 1:**

To change from volts to kW you only have to multiply the variables shown in the formula, according to the type of DC or AC current and the number of phases and then divide by 1000. For example: A biphasic web server has a 120V voltage (AC, LN), a power factor of 0.89 and a current of 7.2Amp, how many kW does the server have ?.

To know the answer you should only take the formula to find biphasic kW by multiplying the variables as follows: 2x120x7.2 x 0.89 = 1.54kW (Formula: kW = 2xV (LN) xIxF.P).

Return to the table of initial contents ↑

**Examples of conversions from volts to kW:**

**Example 1:**

A three phase refrigerator has an AC voltage of 230Volts (LL), 5.7Amperios and a power factor of 0.83, how many kW does the vacuum cleaner have?

Rta: // What you must do is identify the formula to be used, since the equipment is three phase and AC (alternating current), you should use the formula: √3xV (LL) xIxF.P / 1000, replacing the variables would be : √3x230Vx5.7 × 0.83 = 1.88kW.

**Example 2:**

A biphasic sodium luminaire has an AC voltage of 240V (LL), an amperage of 7.7Amperes and a power factor of 0.91, which will be the power in kW of the luminaire ?.

Rta: // Check the formula for biphasic equipment (Formula: kW = 2xV (LN) xIxF.P / 1000), because we have the LL voltage, we must pass it to LN, in the following way: multiply 220V (LL) / √3 = 138V (LN), this is the way in which the voltage from Linea-Linea to Linea-Neutro is converted, then we simply multiply the variables that appear in the formula: 2x138x7,7 × 0.91 = 1.67kW.

**Example 3:**

The three-phase voltage in an office is 380Volt (LL), a power factor of 0.84 and an amperage of 163Amp, how many kW does the office have?

Rta: // As it is a three-phase iluminaicon the formula must be taken: (√3xV (LL) xIxF.P = watts), then replacing the variables I get: √3x380x163x0,84 / 1000 = 90.12kW.

Return to the table of initial contents ↑

**Volts to kW, table for conversion, equivalence, transformation (Amperes = 10Amp, Fp = 0.8, AC, 3F):**

**Note:** The previous conversions take into account a power factor of 0.8, an amperage of 10 Amp and a three-phase AC power. For different variables you should use the calculator that appears at the beginning.

Return to the table of initial contents ↑

**Typical power factor for engines, constructions and appliances.**

**Typical Un-improved Power Factor by Industry:**

Return to the table of initial contents ↑

**Typical power factor of common household electronics:**

Return to the table of initial contents ↑

**Typical Motor Power Factors:**

Power | Speed | Power Factor | ||

(hp) | (rpm) | 1/2 load | 3/4 load | full load |

0 – 5 | 1800 | 0.72 | 0.82 | 0.84 |

5 – 20 | 1800 | 0.74 | 0.84 | 0.86 |

20 – 100 | 1800 | 0.79 | 0.86 | 0.89 |

100 – 300 | 1800 | 0.81 | 0.88 | 0.91 |

*Reference // Power Factor in Electrical Energy Management-A. Bhatia, B.E.-2012*

* Power Factor Requirements for Electronic Loads in California- Brian Fortenbery,2014*

* http://www.engineeringtoolbox.com*

Return to the table of initial contents ↑

## How to use the Volts to kW calculator:

Initially you must choose the type of current you want AC or DC and the number of phases in case of choosing AC, then you must enter the data shown on the left side of the tool, it is important to review what is requested in the table due to the fact that according to what is required, line-line or neutral-line voltage must be input, then you must enter the power factor and finally the amperage.