Converter from latitude and longitude to UTM

Understanding the Conversion from Latitude and Longitude to UTM Coordinates

Converting geographic coordinates from latitude and longitude to UTM is essential for precise mapping. This process translates spherical coordinates into a planar system used worldwide.

This article explores the mathematical foundations, practical formulas, and real-world applications of latitude-longitude to UTM conversion. You will gain expert-level insights and detailed examples.

  • Ā”Hola! ĀæEn quĆ© cĆ”lculo, conversión o pregunta puedo ayudarte?
Pensando ...
  • Convert latitude 40.7128° N, longitude 74.0060° W to UTM coordinates.
  • Calculate UTM coordinates for latitude -33.8688° S, longitude 151.2093° E.
  • Find UTM zone and coordinates for latitude 51.5074° N, longitude 0.1278° W.
  • Transform latitude 35.6895° N, longitude 139.6917° E into UTM format.

Comprehensive Table of Common Latitude and Longitude to UTM Conversions

Latitude (°)Longitude (°)UTM ZoneHemisphereEasting (m)Northing (m)
40.7128 N74.0060 W18Northern583,9604,505,200
34.0522 N118.2437 W11Northern377,4863,765,200
51.5074 N0.1278 W30Northern699,3755,700,000
-33.8688 S151.2093 E56Southern334,8736,252,000
35.6895 N139.6917 E54Northern388,5003,936,000
48.8566 N2.3522 E31Northern448,2515,414,000
55.7558 N37.6173 E37Northern412,0006,158,000
-23.5505 S-46.6333 W23Southern765,0007,400,000
60.1695 N24.9354 E35Northern448,0006,700,000
19.4326 N-99.1332 W14Northern476,0002,150,000

Mathematical Formulas for Latitude and Longitude to UTM Conversion

Converting latitude (φ) and longitude (Ī») to UTM coordinates involves several geodetic formulas based on the WGS84 ellipsoid model. The process includes determining the UTM zone, calculating the central meridian, and applying projection equations.

1. Determining the UTM Zone

The UTM system divides the Earth into 60 zones, each 6° of longitude wide. The zone number (Z) is calculated as:

Z = floor((Ī» + 180) / 6) + 1
  • Ī»: Longitude in degrees (āˆ’180° to +180°)
  • floor(): Mathematical floor function

This formula assigns zones from west to east, starting at 180°W.

2. Central Meridian of the Zone

The central meridian (λ₀) for the zone is:

λ₀ = (Z – 1) Ɨ 6 – 180 + 3
  • λ₀: Central meridian in degrees
  • This is the midpoint longitude of the zone.

3. Ellipsoid Parameters (WGS84)

  • Semi-major axis (equatorial radius), a = 6,378,137.0 m
  • Flattening, f = 1 / 298.257223563
  • Semi-minor axis, b = a Ɨ (1 – f)
  • Eccentricity squared, e² = (2f) – (f²)

4. Conversion of Degrees to Radians

All angular values must be converted to radians for trigonometric functions:

rad = deg Ɨ (Ļ€ / 180)

5. Calculating the Meridian Arc Length (M)

The meridian arc length from the equator to latitude φ is:

M = a Ɨ [ (1 – e²/4 – 3e⁓/64 – 5e⁶/256) Ɨ φ
– (3e²/8 + 3e⁓/32 + 45e⁶/1024) Ɨ sin(2φ)
+ (15e⁓/256 + 45e⁶/1024) Ɨ sin(4φ)
– (35e⁶/3072) Ɨ sin(6φ) ]
  • φ: Latitude in radians
  • e: Eccentricity

6. Calculating the Radius of Curvature in the Prime Vertical (N)

N = a / sqrt(1 – e² Ɨ sin²(φ))

7. Calculating the Tangent and Second Eccentricity

  • Tangent of latitude: tanφ
  • Second eccentricity squared: e’² = e² / (1 – e²)

8. Calculating Easting (E) and Northing (N)

Define:

T = tan²(φ)
C = e’² Ɨ cos²(φ)
A = cos(φ) Ɨ (Ī» – λ₀)

Then, the UTM Easting (E) and Northing (N) are:

E = kā‚€ Ɨ N Ɨ [ A + (1 – T + C) Ɨ A³ / 6 + (5 – 18T + T² + 72C – 58e’²) Ɨ A⁵ / 120 ] + 500,000
N = kā‚€ Ɨ [ M + N Ɨ tan(φ) Ɨ ( A² / 2 + (5 – T + 9C + 4C²) Ɨ A⁓ / 24 + (61 – 58T + T² + 600C – 330e’²) Ɨ A⁶ / 720 ) ]
  • kā‚€: Scale factor at central meridian (usually 0.9996)
  • Eastings are shifted by 500,000 m to avoid negative values
  • For southern hemisphere, add 10,000,000 m to Northing

Detailed Explanation of Variables

  • φ (Latitude): Angular distance north or south of the equator, in radians.
  • Ī» (Longitude): Angular distance east or west of the Prime Meridian, in radians.
  • λ₀ (Central Meridian): Longitude at the center of the UTM zone, in radians.
  • a (Semi-major axis): Radius of the Earth at the equator, in meters.
  • f (Flattening): Describes the compression of the Earth’s ellipsoid.
  • e (Eccentricity): Measures the deviation of the ellipsoid from a perfect sphere.
  • kā‚€ (Scale factor): Corrects scale distortion along the central meridian.
  • N (Radius of curvature): Radius of the Earth perpendicular to the meridian at latitude φ.
  • M (Meridian arc length): Distance along the meridian from the equator to latitude φ.
  • T, C, A: Intermediate variables used in the series expansion for projection.

Real-World Application Examples

Example 1: Urban Planning in New York City

New York City’s coordinates are approximately 40.7128° N latitude and 74.0060° W longitude. For urban planning, engineers require UTM coordinates to integrate GIS data accurately.

Step 1: Calculate the UTM zone:

Z = floor((āˆ’74.0060 + 180) / 6) + 1 = floor(105.994 / 6) + 1 = 17 + 1 = 18

Step 2: Central meridian:

λ₀ = (18 – 1) Ɨ 6 – 180 + 3 = 17 Ɨ 6 – 177 = 102 – 177 = -75°

Step 3: Convert latitude and longitude to radians:

φ = 40.7128 Ɨ Ļ€ / 180 ā‰ˆ 0.7106 rad
Ī» = -74.0060 Ɨ Ļ€ / 180 ā‰ˆ -1.2916 rad
λ₀ = -75 Ɨ Ļ€ / 180 ā‰ˆ -1.3089 rad

Step 4: Calculate ellipsoid parameters (WGS84):

  • a = 6,378,137 m
  • f = 1 / 298.257223563 ā‰ˆ 0.0033528
  • e² = 2f – f² ā‰ˆ 0.00669438

Step 5: Calculate N, T, C, A, M:

  • N = a / sqrt(1 – e² Ɨ sin²(φ)) ā‰ˆ 6,386,000 m
  • T = tan²(φ) ā‰ˆ 0.726
  • C = e’² Ɨ cos²(φ), where e’² = e² / (1 – e²) ā‰ˆ 0.006739
  • A = cos(φ) Ɨ (Ī» – λ₀) ā‰ˆ 0.757 Ɨ (āˆ’1.2916 + 1.3089) = 0.757 Ɨ 0.0173 ā‰ˆ 0.0131
  • M calculated using the meridian arc formula ā‰ˆ 4,505,200 m

Step 6: Calculate Easting (E) and Northing (N):

E = 0.9996 Ɨ N Ɨ [ A + (1 – T + C) Ɨ A³ / 6 + (5 – 18T + T² + 72C – 58e’²) Ɨ A⁵ / 120 ] + 500,000 ā‰ˆ 583,960 m
N = 0.9996 Ɨ [ M + N Ɨ tan(φ) Ɨ ( A² / 2 + (5 – T + 9C + 4C²) Ɨ A⁓ / 24 + (61 – 58T + T² + 600C – 330e’²) Ɨ A⁶ / 720 ) ] ā‰ˆ 4,505,200 m

Thus, the UTM coordinates for NYC are approximately Easting: 583,960 m, Northing: 4,505,200 m, Zone 18N.

Example 2: Environmental Survey in Sydney, Australia

Sydney’s coordinates are approximately 33.8688° S latitude and 151.2093° E longitude. Environmental scientists use UTM coordinates for precise location tracking.

Step 1: Calculate the UTM zone:

Z = floor((151.2093 + 180) / 6) + 1 = floor(331.2093 / 6) + 1 = 55 + 1 = 56

Step 2: Central meridian:

λ₀ = (56 – 1) Ɨ 6 – 180 + 3 = 55 Ɨ 6 – 177 = 330 – 177 = 153°

Step 3: Convert latitude and longitude to radians:

φ = -33.8688 Ɨ Ļ€ / 180 ā‰ˆ -0.5911 rad
Ī» = 151.2093 Ɨ Ļ€ / 180 ā‰ˆ 2.6391 rad
λ₀ = 153 Ɨ Ļ€ / 180 ā‰ˆ 2.6704 rad

Step 4: Ellipsoid parameters remain the same (WGS84).

Step 5: Calculate N, T, C, A, M:

  • N ā‰ˆ 6,388,000 m
  • T = tan²(φ) ā‰ˆ 0.441
  • C = e’² Ɨ cos²(φ) ā‰ˆ 0.0058
  • A = cos(φ) Ɨ (Ī» – λ₀) ā‰ˆ 0.829 Ɨ (2.6391 – 2.6704) = 0.829 Ɨ (āˆ’0.0313) ā‰ˆ āˆ’0.0259
  • M ā‰ˆ 3,752,000 m

Step 6: Calculate Easting (E) and Northing (N):

E = 0.9996 Ɨ N Ɨ [ A + (1 – T + C) Ɨ A³ / 6 + (5 – 18T + T² + 72C – 58e’²) Ɨ A⁵ / 120 ] + 500,000 ā‰ˆ 334,873 m
N = 0.9996 Ɨ [ M + N Ɨ tan(φ) Ɨ ( A² / 2 + (5 – T + 9C + 4C²) Ɨ A⁓ / 24 + (61 – 58T + T² + 600C – 330e’²) Ɨ A⁶ / 720 ) ] + 10,000,000 ā‰ˆ 6,252,000 m

Since Sydney is in the southern hemisphere, 10,000,000 m is added to the Northing to avoid negative values.

The UTM coordinates for Sydney are approximately Easting: 334,873 m, Northing: 6,252,000 m, Zone 56S.

Additional Considerations and Best Practices

  • Accuracy: The formulas assume the WGS84 ellipsoid, which is the global standard. For local applications, consider regional datums.
  • Zone Boundaries: Coordinates near zone boundaries may require special handling or conversion to adjacent zones.
  • Software Tools: GIS software like ArcGIS, QGIS, and online converters automate these calculations but understanding the underlying math is crucial for validation.
  • Scale Factor: The scale factor kā‚€ = 0.9996 reduces distortion along the central meridian but introduces minor scale errors away from it.
  • Hemisphere Adjustment: Always add 10,000,000 m to Northing for southern hemisphere coordinates to maintain positive values.

Authoritative Resources for Further Study

Mastering the conversion from latitude and longitude to UTM coordinates is fundamental for geospatial professionals. This article provides the technical depth and practical examples necessary for expert application.